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We derive an appropriate definition of transpose for quaternionic matrices and 
give a new panoramic review of the quaternionic groups. We aim to analyze 
possible quaternionic groups for GUTs. 

1. INTRODUCTION 

This paper aims to give a clear and succinct classification of possible 
quaternionic groups for grand unification theories (GUTs). While the standard 
group theory which applies to elementary particle physics is complex, nonsu- 
persymmetric GUTs based on complex groups have run into difficulties. A 
stimulating possibility (Adler, 1995) is that a successful unification of the 
fundamental forces will require a generalization beyond the complex. 

We discuss in this paper unitary, special unitary, orthogonal (a new 
definition of transpose for quaternionic matrices overcomes previous difficult- 
ies), and symplectic groups on quaternions and complex linear quaternions. 
Applying a quaternionic group theory to elementary particle physics, our 
purpose is to obtain a set of groups for translating from complex to quaterni- 
onic quantum fields and to emphasize the potentialities of the quaternionic 
groups for focusing on a special class of GUTs. We conclude this brief 
introduction with an amusing historical note. Quaternions were discovered 
by Hamilton (1969) on 16 October 1843. The Irish mathematician was so 
impressed by the new idea that he scratched the main formula of the new 
algebra on a stone bridge that he happened to be passing. 

In the next section we review quaternionic standard material and analyze 
the different scalar products which can be introduced within a quaternionic 
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quantum mechanics. New mathematical material appears in Section 3, where 
we derive an appropriate definition of transpose for quaternionic matrices 
and give a panoramic review of the quaternionic groups. Finally, quaternionic 
groups for GUTs are proposed in Section 4. We draw our conclusions in the 
final section. 

2. QUATERNIONIC ALGEBRA AND COMPLEX GEOMETRY 

The quaternionic algebra over a field ~ is a set 

= {or + i[3 + j 3 '  + k~lc~, [3, 3', 8 E ~}  (1) 

with operation of multiplication defined according to the following rules for 
imaginary units: 

i 2 = j2 = k 2 = _ 1 

ij = k,  j k  = i, k i  = j 

j i  = - k ,  L] = - i ,  ik  = - j  

Complex numbers can be constructed from the real numbers by introducing 
a quantity i whose square is - l :  

c = rt + ir2 (r., c ~ , m  = 1,2) 

Likewise, we can construct the quaternions from the complex numbers in 
exactly the same way by introducing another quantity j whose square is - 1, 

q = c l  + j c 2  (Cm ~ q~.m = 1,2) 

and which anticommutes with i ({i, j}  = 0 =:~ k 2 = - 1 ) .  
We need three imaginary units i, j ,  k because 

/ j = ~ + i [ 3 + j 3 ' ,  eq[3,3 '  ~ 

implies 

i2j  = ieL - [3 + (j3" = iol - [3 + ( ~  + i[3 + j3")3" . . . .  + j3"2 

and so gives the inconsistent relation 

3' 2 = - 1  

In going from the complex numbers to the quaternions we lose the property 
of commutativity. In going from the quaternions to the next more complicated 
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case (called octonionic numbers) we lose the property of  associativity. The 
situation can be graphically represented as in Table I. 

We can immediately show the nonassociativity of  the octonionic numbers 
in the previous "split" representation. We have seven imaginary units (the 
new imaginary unit i" anticommutes with the quaternionic imaginary units i, 
j ,  k) 

i, j ,  k, i, I = i?, J = fi, K = k~ 

It is straightforward to verify that 

I J k  = J K i  = K I j =  - 1  

( I J k  = i?j?k = - f f Z j k  = i jk  = k 2 = - 1 )  

Associativity is dropped by following relations 

i(?k) = - i K  = J,  ( iDk  = Ik  = - J  

To complete this introduction to the quaternionic algebra, we introduce 
the quaternion conjugation operation denoted by ÷ and defined by 

1 ÷ = 1, ( i , j ,  k)  + = - ( i , j ,  k)  (2) 

The previous definition implies 

(~,~)÷ = ,Vq, + 

for +, tp quaternionic functions. The definition of a conjugation operation 
which does not reverse the order of ~, q0 factors is given by 

1" = 1, (i, j ,  k)* = j÷( i ,  j, k)j (3)  

Quaternions, as used in this paper, will always mean rea l  q u a t e r n i o n i c  

n u m b e r s  and never c o m p l e x i f i e d  q u a t e r n i o n s  [~  = c~(1, ~) in equation (1) 
with ~ which commutes with i, j ,  k]. For papers which discuss quantum 
mechanics equations based on complexified quaternions see Morita (1981, 
1982, 1983, 1984a,b, 1985, 1993). 

Table I. 

Name of Method of Rea l  Division 
f i e l d  construction dimension a lgebra  Associativity Commutativity 

Real r I Yes Yes Yes 
Complex c = r~ + ir2 2 Yes Yes Yes 
Quaternionic q = c~ + jc2 4 Yes Yes No 
Octonionic o = q~ + ~qz 8 Yes No No 
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Remembering the noncommutativity of the quaternionic multiplication, 
we must specify whether the quaternionic Hilbert space V~ is to be formed 
by right or by left multiplication of vectors by scalars. We must also specify 
whether our scalars are quaternionic, complex, or real numbers. We will 
follow the usual choice (Adler, 1980a,b, 1985, 1986a,b, 1988, 1989, 1994a; 
Horwitz and Biedenharn, 1984) and work with a linear vector space under 
right multiplication by scalars. 

Operators which act on states only from the left as in 

are named quaternion linear operators; they obey 

~(l+)q) = ((~l~))q (4) 

for an arbitrary quaternion q. More general classes of operators such as 
complex or real linear operators can be introduced. We will use the notation 
6,. (Gr) tO indicate complex (real) linear operators. They act on quaternionic 
states as follows: 

Cc(It~)c) = (C I + C21i)(It~)c) = (Cclt~))c (5) 

Cr(l~)r) = ((~l + ~zli + 031j + (~41k)(t+)r) = (Crlt~))r (6) 

for an arbitrary complex c, real r ((~.2,3,4 represent quaternion linear operators). 
The barred operators G Ib act on quaternionic objects ¢ as in 

(~lb)+ -- 6+b 

There are three scalar products which can be used to define a real-valued 
norm ]I~H- We will call the binary mapping (~1~) of V,~ x V~ into ~ ,  
defined by 

(Olq~) = f d3x 

the quaternion scalar product (Adler, 1995) and the binary mapping (¢1 q0),. 
of V.~ X V~ into ~,  defined by 

1 - ili 
(~ I ~),. - 2 ( ,  I~p) (7 )  

the complex scalar product or complex geometry [as named by Rembielifiski 
( 1978)]. The complex scalar product used by Horwitz and Biedenharn (1984) 
in order to define consistently multiparticle quaternionic states was then 
applied in papers on the Dirac equation (Rotelli, 1989), representations of 
U(1, q) (De Leo and Rotelli, 1995), and translations between quaternion and 
complex quantum mechanics (De Leo and Rotelli, 1994). 
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The last trivial possibility is represented by a real scalar product, the 
binary mapping (t~l ~)r of V~ × V~e into ~ ,  defined by 

1 - i l i - j l j -  k lk(olq~\ /  

4 

In this paper we will use a linear quaternionic Hilbert space under right 
multiplication by complex scalars and will work with complex scalar products. 

To conclude this section, we recall that since (01 ~),. is the complex ~(  1, 
i) projection of (+l~), any transformation which is an invariance of (01¢p) 
is automatically an invariance of (~ I q~),, as well. Obviously a transformation 
which is an invariance of (0 t ¢P)c is not automatically an invariance of (~t ¢p). 
An example of that is given [see De Leo et al. (n.d.-a) or for a brief review, 
Section 4 of this paper] by the quaternionic version of the electroweak group 
U(I, q) I U(1, c) (De Leo et al., n.d.-b). This group represents an invariance 
of (~ I q~),,, but not of (~1 q~). 

3. A NEW POSSIBILITY 

In this section we give a new panoramic review of quatemionic groups. 
W h y  new? As elements of our matrices (given any two vector spaces V~, Vm, 
every linear operator • from V,, to Vm can be represented by an m x n 
matrix) we will not use simple quaternions, but complex linear quatemions 
or generalized quaternions as called in our previous work (De Leo, n.d.-a,b) 

q,, = ql + q21i (ql,2 E ~ )  (8) 

Corresponding to our convention that V~e is a linear vector space under right 
multiplication by complex scalars, the most general linear one-dimensional 
operator which acts on quaternionic functions is in fact represented by (8). 
The product of two complex linear quaternions qc and p,., in terms of quaterni- 
ons ql, q2, Pl, and P2, is given by 

qcP,. = qtPl - q2Pz + (qlP2 + qzp l ) l i  

Before discussing the groups Gl(n, qc), we introduce a new definition 
of transpose for quaternionic matrices which will allow us to overcome 
previous difficulties (our definition, which applies to standard quaternions, 
will be extended to complex linear quaternions). 

The customary convention of defining the transpose M t of the matrix 
M is 

In general, however, for quatemionic matrices M N  one has 

(MN) t 4: N t M t 
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whereas this statement holds as an equality for complex matrices. How can we 
define quaternionic orthogonal groups? Remember that in complex language 

N ' N  = 1, M ' M  = 1 ~ ( M N ) ~ M N  = 1 

where we use the property (MN)' = N'M'. An u n n a t u r a l  possibility is repre- 
sented by the translation from quatemionic to complex groups. We know 
that a quatemionic number can split into 2 × 2 complex matrices by the 
substitution 

i, j ,  k ¢:~ - icr~,  - i c r  2, - i ( r  3 

where (r are the standard (complex) Pauli matrices. Once we write a complex 
matrix, we can trivially obtain the generators of  complex orthogonal groups 
in a standard manner and then we can translate back into quaternionic lan- 
guage. Sure ly  a l abor ious  p r o c e d u r e .  

Defining an appropriate transpose for quaternionic numbers (which goes 
back to the usual definition for complex number c' = c), we can overcome 
the just-cited difficulty. The new transpose q, of  the quatemionic number 

q = et + i[3 + j~/ + k8 (or, [3, ~/, 8 E ~t) 

is 

qt = Ot + i[3 - - j ~  + k8 (9) 

The transpose of a product of  two quaternions q and p is the product of  the 
transpose quatemions in reverse order (note that q~ = - j q + j )  

( q p y  = p,q, 

Our convention of  defining the transpose M' of  the matrix M is 

(Mt)rs = M],. 

and so we have 

(MAt)'  = N ' M '  

Remembering the * conjugation defined in (3), we can write 

M ÷ = M.t  

Noting that under the transpose and quaternion conjugation operation 
we have i I = i and i ÷ = - i ,  we can immediately generalize the definition 
of transpose and quaternion conjugation to complex linear quaternions as 
follows: 

qtc = q't + qt21i 

(q,+ = q-~ - q ~ l i )  
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Introducing complex linear quaternions, we create new possibilities in quater- 
nionic quantum mechanics with complex geometry. For example, we can 
always trivially relate an anti-Hermitian operator A to a Hermitian operator 
H by removing a factor 11 i: 

H = A l i  (I0) 

(<A~lcp)c = -(+IAcp),, 

-i(At~l q~)c = i(~ I Aq~)c = (~ I Atp),.i 

(HqJItp),, = <qJIH~)c) 

This statement is not trivial in quaternionic quantum mechanics with quaterni- 
onic geometry (see Adler, 1995, p. 33). In the literature we know an operator 
like that in (10), the momentum operator 

- O i l  

given by Rotelli in his paper on the quaternionic Dirac equation (Rotelli, 
1989). 

The classical groups which occupy a central place in group representation 
theory and have many applications in various branches of mathematics and 
physics are the unitary, special unitary, orthogonal, and symplectic groups. 
So we will discuss in this paper the U(n, qc), SU(n, qc), O(n, qc), and Sp(n, 
qc) subgroups of Gl(n, qc). 

With complex linear quaternions we have the possibility to give a new 
definition of trace by 

tr qc = re(q0 + i re(q2) 

which implies that for any two complex linear quaternions qc and Pc 

tr(qcpc) = tr(pcqc) 

We know that the generators of the unitary, special unitary, orthogonal, and 
symplectic groups must satisfy the following conditions [a detailed classifica- 
tion of the real Lie algebras of linear Lie groups is given by Cornwell (1990), 
Vol. 2, p. 392]: 

U(n): A + A  + = 0  

SU(n): A + A  ÷ = 0 ,  trA = 0  

O(n): A + A  t = 0 

Sp(2n): o~A + Atoff = 0 
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where 

°ff2"x2" \ -  l.x,, O,,x,,] 

So for the generators of the one-dimensional groups with complex linear 
quaternions we have 

U(l ,  qc): q ~ + q c  + = 0  ~ A  = i , j , k ,  l t i  

SU(I, q~): t r q c = 0  ~ A = i , j ,  k 

O(1, qc): G. + q',. = O ~ A = j,  j l i  

Sp( 1, q~): jqc + q',.j = 0 ~ A = i , j ,  k, ili,  j l i ,  k l i  

Any complex linear quaternion group of dimension n is isomorphic to a 
complex representation of dimension 2n. We give the transformation rule 
[for further details see De Leo and Rotelli (1994)] 

ci c2 zl ¢:* - - + j - - +  + j  li 
C3 C4]\Z2] 2 2 ~ 2i 

(Zl + jz2) 

Remembering that a complex linear quaternion, in terms of real quantities, 
is expressed by 

qc = al + il3t + J'YI + kBj + (a2 + i[32 + J"/2 + kB2)li 

al.2, 13,.z, ~/1.2, ~.2 e ~t 

we have 

complex linear quaternions D quaternions D complex 

and further 

complex linear quaternions D elements like eq + c~21 i --= C6gh, 

So 

Gl(n, qc) D Gl(n, q) D Gl(n, c) 

Gl(n, qc) D Gl(n, Cright) 

We can now give the general formulas for counting the generators of 
generic n-dimensional groups as a function of n: 

Dimensionalities of Groups 

U(n, q,.): 4n + 8 n(n - l ) _ 4 n  2 
2 
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U(n,q): 3n + 4 n ( n -  l ) _ n ( 2 n  + 1) 
2 

U(//, fright): 17 + 2 nCn -- 1) _ nZ 
2 

SU(n, qc): 4n 2 - 1 

SU(n, q) =- U(n, q) 

SU(n, Cright): n 2 -- 1 

O(n,q,.): 2n + 8 n ( n -  l) 
2 

- 2n(2n - !) 

O(n,q): n + 4 n ( n - -  1 ) _  n(2n-- 1) 
2 

O(n, Gigh,): 2 n ( n - -  1 ) _ n ( n _  1) 
2 

For the quaternionic symplectic groups we have 

=(  Onxn lnXn), ~ Oix n {  OnXn OnxI Oixn llnxn~ 
°ff2'~xz" \ -  1.x,, O,,x,~/ °ff~z"+ l)x~2"+ 1) = J 

\- lnxn O,,xl Onxn/ 
SO 

Sp(2n. q~): 8n2+ 2 1 6 n + 8 n ( n -  1)] = 4n(4n + 1) 

Sp(2n, q): 4nZ+ 2 1 3 n + 4 n ( n -  1)] = 2  2n(4n+ 1) 

Sp(2n, Cright): 2n2+ 212n + 2 n ( n - 1 ) ] = 2 n ( 2 n + l )  

Sp(2n + 1, qc): 4n(4n + I) + 2(8n) + 6 = 2(2n + 1)[2(2n + 1) + 1] 

Sp(2n + l ,q):  2n(4n + 1) + 2(4n) + 3 = (2n + I)[2(2n + 1) + 1] 

The situation for the symplectic groups can be summarized as follows: 

Sp(n, qc): 2n(2n + 1) 

Sp(n, q) ~ U(n, q) 

Sp(2n, cright): 2n(2n + 1) 
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In this section we have introduced quaternionic groups defined on the 
complex linear quaternions field. Working with a noncommutative number 
field, we must differentiate left and right multiplication (for example, ~j = 
k,  j i  = -k )  and so we think it natural to introduce objects like 11i in order 
to indicate the right multiplication of quaternionic numbers by i. Our attention 
in this paper is directed to complex linear quaternions since we work within 
a quaternionic quantum mechanics with complex geometry and so objects 
like I Ij and 1 I k will not have well-defined Hermicity properties. Nevertheless, 
from a mathematical viewpoint, we find a full generalization very interesting 
and so this paper could represent a first step toward a more complete treatment 
of quaternionic groups. 

4. QUATERNIONIC GROUPS FOR GUTs 

Finally we can apply quaternionic group theory to elementary particle 
physics. We must remark on an important point. A symmetry operation 
of a system described by I~) is a mapping of I~) into I~') which preserves 
all transition probabilities 

b ( ~ ' l ~ ' ) 1 2  = t ( ~ l ~ ) i  2 

In quaternionic quantum mechanics with complex geometry a 'quaternionic I- 
complex' phase 

eie' + Jf~ + *v l e i~ ( 1 1 ) 

appears. We can immediately prove that the previous transformation repre- 
sents an invariance of (~1~),~, 

(t~'ltp')c = e- i~( t~lq~) , .e  i~ = (~bltp) c 

[the transformation (11) obviously does not represent an invariance of the 
quaternionic scalar product (~lq~)]. So a quaternionic invariance group like 
that of the electroweak gauge group [for further details on the group U(I, 
q) in quaternionic quantum mechanics with complex geometry see De Leo 
and Roteili (1995)] naturally appears. In a recent work (De Leo and Rotelli, 
n.d.-a) we studied the Higgs sector of the electroweak model from the point 
of view of quaternionic quantum mechanics with complex geometry. The 
Higgs fields are assumed to be four (two complex) and this coincides with 
the number of solutions of the standard Klein-Gordon equation within quater- 
nionic quantum mechanics with complex geometry. The global invariance 
group of the one-component Klein-Gordon equation is U(I, q)lU(1, c) 
isomorphic at the Lie algebra level with the Glashow-Salam-Weinberg 
group. 



Quaternions for GUTs 1831 

The aim of this paper is to extend our previous considerations about 
quaternionic electroweak models and to propose quaternionic groups for 
GUTs. 

Within our formalism the peculiarity is the doubling of solutions (note 
that with complex scalar products, I~) and I tb)j are orthogonal states), so we 
have some problems in discussing the color group (three states: R, G, B). There 
are three possibilities. The first one represents a conservative hypothesis, the 
second and the third ones represent interesting ideas with potential pre- 
dictive powers. 

• SU(3, Cright ) for color group. We have the following doubling of states: 

We need a 'new' quantum number to differentiate the previous solutions. 
The appropriate quantum number is represented by the weak isospin. So we 
can rewrite the previous solutions as follows: 

ua , j da 
\u./  \d. /  

Note that the complex group SU(3, c,igm) does not mix u with jd, and the 
one-dimensional quaternionic group U(I, q) does not mix R, G, B. We are 
particularly pleased with that. So the color group SU(3, cngm) suggests the 
weak-isospin group U(I, q). The gauge group for the standard model is 

SU(3, crigm) ::'< U(I, q)L × U(I, Cright)r 

[in this way, using the color group SU(3, cri~j,), we have a translation between 
complex and quaternionic theories]. We recall that in our Dirac Lagrangian 
we need a complex projection (De Leo and Rotelli, n.d.-b) in order to obtain 
the right field equations and so the complex group U(I, crigm) will always 
be an invariance of our Lagrangians. 

• SU(3, c) for color group. We always have a doubling of states, but 
in this case the complex solutions transform like 3, whereas the j-complex 
solutions transform like 3* (to see that, it is sufficient to note that ij = ji*). 
So, working with the standard group SU(3, c), we remark the possibility of 
additional multiplets. 

The minimal grand unification group SU(5, c) (Georgi and Glashow, 
1974) will have (in our formalism) the following additional multiplets: 

5 + j5*, 10 + j l0*  
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This is an interesting result; in fact, we know that a single unification point 
cannot be obtained within minimal (nonsupersymmetric) SU(5, c). The a.~tro,g 
coupling misses the crossing point of the other two by more than eight 
standard deviations. In the 'quaternionic' version of SU(5, c) additional 
multiplets of quarks and leptons naturally appear and so we could find right 
unification properties. Amaldi et al. (1992) proposed a nonsupersymmetric 
SU(5, c) model, based on additional split multiplets [split multiplet models 
also appear in Frampton and Glashow ( 1983)]. Their model shows unification 
properties similar to the minimal supersymmetric extension of the standard 
model 

Mthreshol d = 10 3.2--.0.9 GeV 

MGU T = 1016"0=0'3 G e V  

• Quatemions for color group. Looking at results of the previous sec- 
tion, we can immediately observe that the minimal quaternionic group candi- 
date for color group is 

SU(2, qc) 

In fact, its 15 generators contain the 8 generators of the standard color group 
SU(3, c). In this case we do not have a doubling of solutions; nevertheless 
we must note the appearance of an additional solution 

+ jW] 

In this case we start with the gauge group SU(2, q,.) and break down to the 
usual color group (in the quaternionic version). We need a fourth color. 

What about the fourth color? The idea of a fourth color (as lepton 
number) was proposed by Pati and Salam (1973). With quarks and leptons 
in one multiplet of a local gauge symmetry group G, baryon and lepton 
number conservations cannot be absolute. This line of reasoning led Pati and 
Salam (PS) to predict that the lightest baryon--the proton--must ultimately 
decay into leptons. The PS model was proposed before any grand unification 
scheme and so it constitutes really the forerunner of the GUT idea that quarks 
and leptons should belong to common representations of the gauge group. 

Following the PS idea, we can put the fe~nions of the first generation 
in the multiplets 

(uR + do / 
uB + JVw] d8 + Jew/ 
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and propose an 'electrostrong' model based on the gauge group 

SU(2, q,.) X U(I, Crigh0 

If we wish to consider unification in the context of a bigger gauge group 
than SU(5, c), we must consider the group SO(10, r). This group can break 
down to the standard model gauge group in many different chains of symmetry 
breaking. Chains preferred from the CERN LEP data include the PS model 
[for further details see Deshpande et al. (1992) and Galli (1993)]. We can 
now immediately translate (De Leo and Rotelli, 1994) the PS model based 
on the complex group 

SU(4) X SU(2)L x SU(2)R 

by the quaternionic group 

SU(2, qc) × U(I, q)m × U(I, q)R (12) 

and propose a GUT model based on the group 0(5, q), which represents the 
minimal quaternionic group which contains the gauge group (12). 

We conclude this paper with a completely new idea inspired by quaterni- 
ons. We have discussed the problem concerning the odd number of colors. 
Before the 1974 discovery of J/~ (bound state of a charmed quark and a 
charmed antiquark) at Brookhaven National Laboratory and at Stanford Linear 
Accelerator Center, we would have had the same problem with the flavor 
group. In that case the correct predictive hypothesis would have been the 
choice of SU(2, q,.) for flavor group and the choice of a new quark as 
fourth flavor 

+ jc]  

In contrast, the conservative hypothesis is represented by using SU(3, c~ight) 
for the flavor group, with the spin as new quantum number to differentiate 
the doubling of solutions 

I I d, , j ds 
\ s , /  \ s + /  

So why do we not propose a white quark as fourth color? This possibility 
is currently under investigation (Papa, 1995). The existence of white quarks 
is probably esoteric, but not a priori wrong. In fact, we could start with 
"four" colors (R, B, G, W) and 15 generators [equal to the number of SU(2, 
qc) generators] and obtain the standard QCD results ("three" colors and eight 
massless gluons) after spontaneous symmetry breaking. In this case seven 
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gluons and the white quarks would have to be very massive, reproducing at 
the present energies the standard physics. A complete analysis will be given 
in a forthcoming detailed work. An interesting quaternionic group for GUTs 
(only proposed here) appears natural if we believe in the existence of white 
quarks. The just-cited quaternionic group is 

SU(3, q,.) 

This group represents the natural quaternionic extension of the group SU(5, 
c), is algebraically isomorphic to SU(6, c), and contains the (new) color group 
and the electroweak group. In a forthcoming paper we will focus attention 
on this group. Remembering that the anomaly for the representation R may 
be characterized by 

tr({T", Tb}T C) = A(R)d "b" 

(T a normalized generators of the representations R, d abe symmetric structure 
constants of the Lie algebra), and that for a representation given by the 
completely antisymmetric product of p fundamental representations of SU(n, 
c) the coefficient A(R) is 

(N - 3)! (N - 2p) 
A(R) = 

( N - p -  l ) ! ( p -  1)! 

we have for SU(6, c) [the complex counterpart of SU(3, qc)] an anomaly 
cancellation when 

p = N / 2  = 3 

That implies three vertical boxes in the Young tableaux and so a 20-dimen- 
sional representation. We now have 20 particles to accommodate in this 
representation; in fact, we can add to the standard 16 particles of the first 
generation the following new four particles 

UW.L, U'~L, dW.L, dCw.L 

A last possibility concerning quaternion groups for GUTs is given by 
the choice of the quaternionic group SU(3, q,.), but without requiring a fourth 
color. The unification of the standard coupling constants could appear through 
the split-multiplet mechanism for the complementary heavy fermions. The 
complex counterpart of SU(3, qc), namely SU(6, c), is considered in detail 
in an interesting work of Chkareuli et al. (1994). We briefly summarize 
their results: 

SU(6, c) model with: 
• One family of complementary fermions 
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Mintermediate breaking = 5.4 X 10 2 GeV, Mcu = 1.3 × 1016 GeV 

• Two families of complementary fermions 

Mintermediate breaking = 2.4 X 109 GeV, Mcu = 1.2 × 1016 GeV 

• Three families of complementary fermions 

Mintermediate breaking = 3.9 X 10 It GeV, Mou = 1.3 X 1016 GeV 

5. CONCLUSIONS 

In this paper we have given an informal panoramic review of the quaterni- 
onic groups. From a mathematical viewpoint, our main aim was to highlight 
the possibility of looking at new quaternionic groups by the use of complex 
linear quaternions as a first step toward a more complete treatment and a 
generalization of quaternionic group theory. From a physical viewpoint, our 
intention was to analyze possible quaternionic groups for GUTs. We obtained 
a set of groups for translating from standard complex quantum fields to a 
particular version of quaternionic quantum fields and proposed some new 
group with potential predictive powers. We list our results as follows: 

Groups for Translating from cqm to qqm with Complex Geometry 

SU(3, Cright ) X U(1, q)L X U(I, Cright) Standard model 
SU(2, qright) × U(I, q)L × U(I, q)R PS standard model 
0(5, q) SO(10, r) GUT model 
SU(3, q,.) Split-muttiptets provide for unification 

Groups with Potential Predictive Power 

SU(5, c) Split-multiplets, proposed by Amaldi et aL, naturally appear 
SU(3, qc) Flavor inspires fourth color, hypothetical existence of white quarks 

We have proposed some quaternionic groups for GUTs and remarked 
on their potentialities for focusing on a special class of standard complex 
GUTs [detailed review of the complex groups for unified model building is 
given in Langacker (1984) and Slansky (1981)]. A further analysis of the 
quaternionic groups introduced here will be given in a more detailed work, 
where we will particularly focus on the quaternionic group SU(3, qc). 

Finally, we recall that we have another possibility for looking at funda- 
mental physics as proposed by Harari (1979) and Shupe (1979). We can think 
of quarks and leptons as composites of other more fundamental fermions, 
preons. A stimulating idea (within quaternionic quantum mechanics with 
quaternionic geometry) about this possibility is proposed by Adler (1994b, 
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1995, p. 501). He suggests that the color degree of freedom postulated in 
the Harari-Shupe scheme could be sought in a noncommutative extension 
of standard quantum mechanics. 

We hope that this paper has emphasized the nontriviality in the choice 
of adopting quaternions as the underlying number field and has remarked on 
the possible predictive power in using a new mathematical formalism to 
describe theoretical physics. 2 Why i, j, k? Why not? 
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